Parallelogram-free distance-regular graphs having completely regular strongly regular subgraphs

نویسنده

  • Hiroshi Suzuki
چکیده

Let = (X,R) be a distance-regular graph of diameter d . A parallelogram of length i is a 4-tuple xyzw consisting of vertices of such that ∂(x, y)= ∂(z,w)= 1, ∂(x, z)= i, and ∂(x,w)= ∂(y,w)= ∂(y, z)= i− 1. A subset Y of X is said to be a completely regular code if the numbers πi,j = | j (x)∩ Y | (i, j ∈ {0,1, . . . , d}) depend only on i = ∂(x,Y ) and j . A subset Y of X is said to be strongly closed if {x | ∂(u, x)≤ ∂(u, v), ∂(v, x)= 1} ⊂ Y, whenever u,v ∈ Y. Hamming graphs and dual polar graphs have strongly closed completely regular codes. In this paper, we study parallelogram-free distance-regular graphs having strongly closed completely regular codes. Let be a parallelogram-free distanceregular graph of diameter d ≥ 4 such that every strongly closed subgraph of diameter two is completely regular. We show that has a strongly closed subgraph of diameter d−1 isomorphic to a Hamming graph or a dual polar graph. Moreover if the covering radius of the strongly closed subgraph of diameter two is d−2, itself is isomorphic to a Hamming graph or a dual polar graph. We also give an algebraic characterization of the case when the covering radius is d − 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property∗ (Preliminary Version 2.0.0)

In this paper, we study a distance-regular graph Γ = (X,R) with an intersection number a2 6= 0 having a strongly closed subgraph Y of diameter 2. Let E0, E1, . . . , ED be the primitive idempotents corresponding to the eigenvalues θ0 > θ1 > · · · > θD of Γ. Let V = C be the vector space consisting of column vectors whose rows are labeled by the vertex set X. Let W be the subspace of V consistin...

متن کامل

On Subgraphs in Distance-Regular Graphs

Terwilliger [15] has given the diameter bound d < (s 1)(k 1) + 1 for distance-regular graphs with girth 2s and valency k. We show that the only distance-regular graphs with even girth which reach this bound are the hypercubes and the doubled Odd graphs. Also we improve this bound for bipartite distance-regular graphs. Weichsel [17] conjectures that the only distance-regular subgraphs of a hyper...

متن کامل

Triangle-free distance-regular graphs

Let Γ = (X, R) denote a distance-regular graph with distance function ∂ and diameter d ≥ 3. For 2 ≤ i ≤ d, by a parallelogram of length i, we mean a 4-tuple xyzu of vertices in X such that ∂(x, y) = ∂(z, u) = 1, ∂(x, u) = i, and ∂(x, z) = ∂(y, z) = ∂(y, u) = i − 1. Suppose the intersection number a1 = 0, a2 6= 0 in Γ. We prove the following (i)-(ii) are equivalent. (i) Γ is Q-polynomial and con...

متن کامل

Weak-Geodetically Closed Subgraphs in Distance-Regular Graphs

We show that if the intersection number c2 > 1 then any weak-geodetically closed subgraph of X is distance-regular. Γ is said to be i-bounded, whenever for all x, y ∈ X at distance δ(x, y) ≤ i, x, y are contained in a common weakgeodetically closed subgraph of Γ of diameter δ(x, y). By a parallelogram of length i, we mean a 4-tuple xyzw of vertices in X such that δ(x, y) = δ(z, w) = 1, δ(x,w) =...

متن کامل

Some Results on the Eigenvalues of Distance-Regular Graphs

In 1986, Terwilliger showed that there is a strong relation between the eigenvalues of a distance-regular graph and the eigenvalues of a local graph. In particular, he showed that the eigenvalues of a local graph are bounded in terms of the eigenvalues of a distance-regular graph, and he also showed that if an eigenvalue θ of the distance-regular graph has multiplicity m less than its valency k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009